
A brief introduction to R

Sean Anderson, sean anderson@sfu.ca

September 17, 2011

Contents

1 Why R? 2

2 The idea 2

3 Workflow 3

4 Object types 3

5 The workspace 5

6 Basic syntax 6

7 Helpful tools to look at your data 6

8 Subsetting and manipulation 8

9 Programming concepts 10

10 A matter of style 13

1

11 Reading data in 14

12 Getting data out 15

13 Packages 15

14 Getting help 16

15 Basic plotting 17

1 Why R?

R is scriptable, reusable, sharable. By using it you document your analyses for
yourself and for others, which creates reproducible research. This is a good thing. R
is open-source (meaning it’s free to use) and has quickly become the standard for
data analysis around the world. Additionally, R now tends to have the best and most
current statistical packages available.

R has a steep initial learning curve but enormous longterm gains and your pace of
learning will accelerate through time if you stick with it. You will find that there is
always more to learn about R. The time, effort and quantity of code it will take you
to accomplish tasks will hopefully dramatically lessen as you progress.

2 The idea

R is an “object-oriented programming language” (and as programming languages go,
a relatively straightforward one!). The idea is that “objects” take on values. You
can manipulate those objects as need be. You can add values to them, feed values
between objects, and get values back out. Each object carries values of certain types
(called a “class”). An object might represent a single number, a series of numbers,
or a mixture words and numbers, or a function that does something like return an
average of a series of numbers, for example.

These objects are given a name. In R, these object names must start with a letter
of the alphabet and can then consist of letters, numbers, underscores, and periods.

2

Keep in mind that capitalization counts.

3 Workflow

There are two main ways you will interact with R: interactively and through scripts
that you save (plain text files containing lines of code). Typically you will build
code by trying it interactively and then save what works in a script. You’ll probably
find it easiest to code more complicated operations directly in a script. That script
provides documentation of what you have done, can be modified and reused in the
future, and can be passed on to others who want to repeat your analysis.

Generally, you’ll find it easiest if you set up your desktop so you can view at least
one script file and your “console” (where you type the interactive commands) on the
screen at once. Since vertical space is usually at a premium, you might want to
consider having one beside the other. Some text editors will let you open two or
more files beside or on top of one another. You might find this helpful when your
scripts get more complicated. Most good text editors will allow you to send lines of
code directly to R from your script. If you’re not already familiar with a program
for working with R, RStudio is a good program to try.

The important message here is that if you care about what you’re typing in the
console and want to be able to repeat it then save it in a script!

4 Object types

R has a number of object classes that you’ll come across frequently. Here are some
of the basic classes that are good to know along with examples:

character "hello"

numeric 999

logical TRUE or FALSE

vector multiple character, numeric, or logical values: c("one", "two") or c(1, 2)

or c(TRUE, FALSE)

3

array or matrix Arrays are numeric vectors in multiple dimensions. A matrix
(what you will most often see) is a two dimensional array.

> m <- matrix(data = c(1, 2, 3, 4), ncol = 2)

> m

[,1] [,2]

[1,] 1 3

[2,] 2 4

data.frame Data frames can contain multiple vector types (e.g., numeric, character,
logical) in column format. You can think of them as a matrix in which different
columns can contain different classes of vectors. They are a common and useful
object type.

> d <- data.frame(col1 = c(1, 2), col2 = c("species1", "species1"))

> d

col1 col2

1 1 species1

2 2 species1

list Lists can contain any combination of object types — for example a data frame,
a vector, and a character vector.

> l <- list()

> l[[1]] <- d

> l[[2]] <- c(1, 2, 3)

> l[[3]] <- "hello"

> l

[[1]]

col1 col2

1 1 species1

2 2 species1

[[2]]

[1] 1 2 3

[[3]]

[1] "hello"

4

factor A factor is a vector of character objects with an underlying numeric value.
They can be ordered or unordered. You might find these the most confusing
at first. They can be useful for building models or plotting when the order of
categorical values matters. (As straight character vectors they would be sorted
alphabetically.)

> x <- c(1, 2, 3)

> factor.x <- factor(x, levels = 1:3)

> levels(factor.x) <- c("low", "medium", "high")

> as.numeric(factor.x)

[1] 1 2 3

> levels(factor.x)

[1] "low" "medium" "high"

There are other standard object formats (such as timeseries, equations, and func-
tions), but we won’t go into these at this point. With the work we (ecologists, or
maybe even most scientists) do, most of the time you’ll find yourself working with
data frames or vectors of numbers.

5 The workspace

In R, a “workspace” contains a group of objects. The most common workspace will
be the global workspace. To see all the objects in your global workspace you can use
the ls() command:

> ls()

[1] "d" "factor.x" "l" "m" "x"

You can remove an object with the rm() command. You can remove all global objects
with rm(list = ls())

> rm(factor.x)

> rm(list = ls())

> ls()

5

character(0)

6 Basic syntax

The basic syntax to work with R is surprisingly simple. How you put it all together
to do what you want is where it gets fun. Here are the symbols you’ll need to know
the meaning of:

<- This means assign a value to the object the arrow points to. There are other
ways to assign values, but <- is generally accepted as the best practice. (e.g.
a <- 2)

= Most often used when “calling” a function to tell the function what values to use.
(e.g. plot(1, 1, xlab = "My x-axis label"))

~ Most often used in equations to relate the dependent to the independent variables.
(e.g. lm(y ~ x))

== < > >= <= Equal to, less than, greater than, and so on.

- + / * ^ Subtract, add, divide, multiply, raise to a power.

$ Its most frequent use is to let you access a column in a data frame by its name.
(e.g. my.data.frame$column.name)

[] Lets you access indexed values of a vector, matrix, or data frame. (e.g. my.vector[1])
We’ll come back to this.

[[]] Lets you access indexes of a list. (e.g. mylist[[1]])

7 Helpful tools to look at your data

head Shows you the first six rows of your data by default. Very useful when your
data is long. Also see tail().

> head(iris)

6

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

names Gets the names of an object; most often this will be the column names of a
data frame.

> names(iris)

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

summary Summarizes information about your object. The output will vary de-
pending on your object type.

> summary(iris[, 1:2])

Sepal.Length Sepal.Width

Min. :4.300 Min. :2.000

1st Qu.:5.100 1st Qu.:2.800

Median :5.800 Median :3.000

Mean :5.843 Mean :3.057

3rd Qu.:6.400 3rd Qu.:3.300

Max. :7.900 Max. :4.400

str Show a summary of the structure of your object.

> str(iris)

’data.frame’: 150 obs. of 5 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

unique Show the unique instances of values within an object.

7

> unique(iris$Species)

[1] setosa versicolor virginica

Levels: setosa versicolor virginica

max, min, range These do what you’d think they would.

> range(iris$Sepal.Length)

[1] 4.3 7.9

8 Subsetting and manipulation

R has many powerful functions for manipulating data. For now, we will focus on the
basics.

First, let’s create some data:

> d <- data.frame(species = c("A", "A", "B", "B", "C", "C"), count = c(9,

+ 2, 5, 5, 7, 8))

Let’s say we wanted to extract the counts for all of species A. Two basic ways we can
do that are via indexing and via the subset function. For indexing we use square
brackets. If we have rows and columns (as in a data frame), indexing takes the form
of [row, column]. So, my.data.frame[1,] would mean return the 1st row of the
data frame. my.data.frame[2, 3] would mean return the value from the 2nd row
and the 3rd column. Getting back to the species counts, here are two ways to start:

> d[d$species == "A",]

species count

1 A 9

2 A 2

> subset(d, species == "A")

8

species count

1 A 9

2 A 2

Or, if we knew these were the first two rows, we could have done this:

> d[1:2,]

species count

1 A 9

2 A 2

Or we could have removed all other rows:

> d[-c(3:6),]

species count

1 A 9

2 A 2

> d[-which(d$species %in% c("B", "C")),]

species count

1 A 9

2 A 2

> subset(d, !species %in% c("B", "C"))

species count

1 A 9

2 A 2

transform is an elegant way to create new columns in a data frame based on existing
data. E.g., say we wanted to create a column which was equal to the log of the species
count column and another that was the square root of species count.

9

> d <- transform(d, log.count = log(count), sqrt.count = sqrt(count))

> d

species count log.count sqrt.count

1 A 9 2.1972246 3.000000

2 A 2 0.6931472 1.414214

3 B 5 1.6094379 2.236068

4 B 5 1.6094379 2.236068

5 C 7 1.9459101 2.645751

6 C 8 2.0794415 2.828427

Alternatively, we could have done this:

> d$log.count = log(d$count)

> d$sqrt.count = sqrt(d$count)

If we want to remove a column, we can set its value to NULL:

> d$sqrt.count <- NULL

> names(d)

[1] "species" "count" "log.count"

9 Programming concepts

A bit of familiarity with some standard programming concepts can help when getting
started with R.

loops Loops repeat a section of code multiple times. They can be ended after
a certain number of times or when a certain condition becomes true. Unlike
many other languages, loops are generally discouraged in R since there are often
more elegant and faster options available. Still, sometimes they are necessary,
and sometimes they are simpler to code. Here’s a basic “for loop”:

10

> x <- 0

> for (i in 1:3) {

+ i <- i + 1

+ print(i)

+ }

[1] 2

[1] 3

[1] 4

This is probably a good time to point out that R excels at vector and matrix op-
erations but can be exceedingly slow at loops, especially if you are subsetting or
manipulating your data with each loop. People will often suggest that you “vec-
torize” what you’re doing. This means remove the loop and operate on the vector
instead. Here’s a simple example. system.time is just a function that times how
long something takes. These both do the same thing but the first attempt is over a
1000 times slower. This can make a huge difference with long loops or big datasets.
For example, here is the same operation in a loop and vectorized format:

> x <- runif(2e+05)

> system.time(for (i in 1:2e+05) {

+ x[i] <- x[i] * 2

+ })

user system elapsed

0.576 0.002 0.578

> system.time(x * 2)

user system elapsed

0 0 0

logical statements Operators such as <, >, <=, >=, == can be combined with
“and” operators & and/or “or” operators | to select data or check the values of
an object. Use brackets to group logical statements. Another useful operator
is %in% which checks which values from the first object are found in the second
object.

11

> x <- c(1, 2, 3)

> y <- c(2, 3, 4)

> x < y

[1] TRUE TRUE TRUE

> x[x < y]

[1] 1 2 3

> x %in% y

[1] FALSE TRUE TRUE

> x[x %in% y]

[1] 2 3

> x[x %in% y & x <= 2]

[1] 2

> x[x %in% y | x <= 2]

[1] 1 2 3

> x[x %in% y | (x <= 2 & x > 1)]

[1] 2 3

if else statements If else statements check is something is true. If the statement
is true, they do one thing. If the statement if false, they do something else.

12

> a <- 4

> if (a < 3) {

+ a.is.small <- TRUE

+ } else {

+ a.is.small <- FALSE

+ }

> a.is.small

[1] FALSE

Keep in mind that you don’t necessarily need an else statement. Also, if there is
only one line after an if or else statement then you don’t need the {}s.

functions Functions are chunks of code that typically fulfill one purpose. They
take input values, do something to them or plot something, and can return
values. This may seem abstract at this point, but functions are immensely
useful. Essentially, they let you reuse bits of code and make your code more
readable by making your intentions explicit. Almost any analysis in R that
you do will at least make use of functions from packages. If your analysis gets
slightly more complicated, you will quickly find that writing your own functions
will simplify your work in the long run. You won’t end up copying and pasting
code and it will therefore be easier to maintain if you want to make changes to
it.

As an example, we might rewrite a simplified version of the mean function like this:

> my.mean <- function(x) sum(x)/length(x)

> my.mean(c(1, 6, 2, 9, 4))

[1] 4.4

10 A matter of style

Following a consistent style can make your code easier for you and others to read
and, most importantly, reduce mistakes.

13

There is no official style guide for coding in R, but the most frequently used guide is
probably the one by Google: http://google-styleguide.googlecode.com/svn/

trunk/google-r-style.html

As an alternative, see Hadley Wickham’s: http://had.co.nz/stat405/resources/
r-style-guide.html

11 Reading data in

Before you read data in, you’ll want to make sure R knows what directory you are
working in. On a Mac (or any Unix system) you can set the “working directory” like
this (for Windows the directory name will start with something like c:/):

> setwd("~/Dropbox/presentations/r-intro/")

You can always check your current working directory with getwd(). Note that on a
Mac (or any Unix system) ~ is an abbreviation for your home directory.

> getwd()

[1] "/Users/seananderson/Dropbox/presentations/r-intro"

There are many ways to read in your data. Here are some common ways:

read.csv Reads your data from a .csv file.

read.table Reads your data from any plain text based format.

load Loads data from a .rda or .Rdata file that was previously saved.

scan The most basic way to import your data. Still useful for text files with one
column of data.

read.csv is a special version of read.table that has defaults that work well for .csv
files. A common question is whether you can read Excel files into R. The answer is
yes (via a package such as gdata), but it’s usually not advisable. File formats change

14

http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
http://had.co.nz/stat405/resources/r-style-guide.html
http://had.co.nz/stat405/resources/r-style-guide.html

through the years (and even from computer to computer) and you want your data
in as simple and longterm a format as possible. Plus, formatting in spreadsheets can
have strange consequences when read directly into R. So, save your spreadhsheet as
a .csv or tab delimited file first.

12 Getting data out

write.csv Writes your data to a .csv file.

write.table Writes your data to whatever format you’d like.

save Saves an object to an R data file. Conventional file extensions are .rda or
.Rdata.

save.image Saves all objects in memory to a file named .Rdata unless you specify
otherwise.

13 Packages

Packages contain groups of functions, usually for a specific purpose. All the functions
come with help files. Sometimes the package comes with a vignette, which is a fancy
name for a helpful manual written by the package author or authors.

To install a package you can do so via the R or RStudio menu system or type
something like the following, in this case to install the package beanplot:

install.packages("beanplot")

After you’ve installed a package, you can load it with the library or require com-
mands. These do nearly the same thing, read the help files if you’re curious about
the difference.

require(beanplot)

15

R comes with many packages that the maintainers of R have deemed general and
useful enough to be loaded automatically. For example, plot is part of the graphics
package that is automatically loaded when you start R.

Want to check for a vignette?

vignette(beanplot)

14 Getting help

Knowing how to get help on R functions is vital. It is expected that you will read
the help files and they are often surprisingly detailed and helpful — particularly the
examples at the bottom.

The most basic way to get help is with the ? before a function name. E.g., ?plot
will bring up the help screen for the function plot. The question mark is your best
friend in R!

Other tricks you may find helpful:

RSiteSearch This searches the R-help listserve in a browser. You may want to refine
what aspects of the listserve are searched once the results appear by ticking off
additional boxes.

sos package and ??? If you’re trying to find a package or function to do something,
odds are someone’s already written it. Try ??? and you’ll often be amazed.

require(sos)

???"multimodel averaging"

websites There are lots. One favourite is http://www.rseek.org/.
http://stackoverflow.com/ and the related
http://stats.stackexchange.com/ are also very good.

books There are lots of good books. All recent Springer books are available as PDF
downloads on the SFU network http://springerlink.com/content/ Peter
Dalgaard’s Introductory Statistics with R is a classic starting point. Venables

16

http://www.rseek.org/
http://stackoverflow.com/
http://stats.stackexchange.com/
http://springerlink.com/content/

and Ripley’s Modern Applied Statistics with S is nearly essential. Both of these
books are surprisingly readable. As is Zuur, Ieno, and Meesters’s A Beginner’s
Guide to R.

15 Basic plotting

Personally, I find visualizing data where R really shines. There are almost no limits to
what you can create visually via R, although some of the syntax and tricks to achieve
what you want may seem arcane at first. I will save most plotting for another day,
but to get you started, let’s use the plot function and explain a few of the options.

> par(cex = 0.6)

> plot(iris$Sepal.Length, iris$Sepal.Width, pch = 19, col = "#00000080",

+ xlab = "Sepal length", ylab = "Sepal width")

17

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.
0

2.
5

3.
0

3.
5

4.
0

Sepal length

S
ep

al
 w

id
th

I first set the “character expansion factor”cex to a smaller size than the default value
of one to make the text, axes, and symbols a reasonable size for the plot. Then I gave
the function plot a series of numbers for the x-values and a series of numbers for
the y-values. Be default, R will try to come up with some reasonable axis limits and
labels. I chose to specify the axis labels myself. I told it to use filled in circles pch

= 19 and gave it a colour of black with 80% opacity #00000080 to show overlapping
points. Everything you see is customizable. See ?plot.default and ?par for many
of the options.

18

	Why R?
	The idea
	Workflow
	Object types
	The workspace
	Basic syntax
	Helpful tools to look at your data
	Subsetting and manipulation
	Programming concepts
	A matter of style
	Reading data in
	Getting data out
	Packages
	Getting help
	Basic plotting

